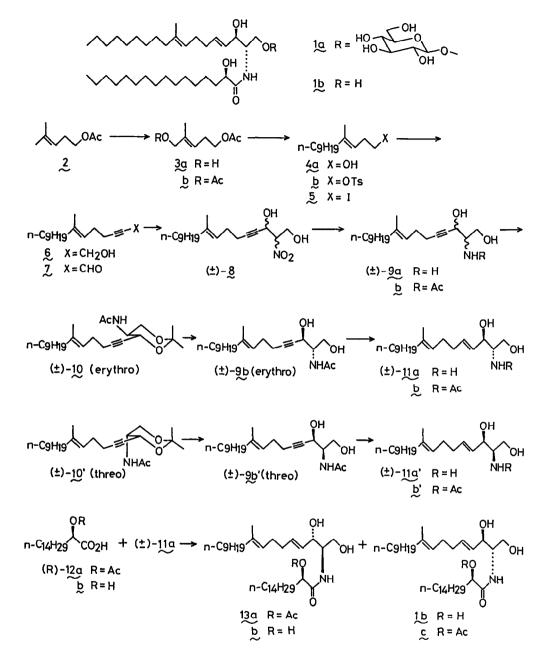
Tetrahedron Letters, Vol.25, No.46, pp 5291-5294, 1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

SYNTHESIS OF $(2\underline{S}, 3\underline{R}, 4\underline{E}, 8\underline{E}) - \underline{N} - (2'\underline{R}) - 2' - HYDROXYHEXADECANOYL-9-$ METHYL-4,8-SPHINGADIENINE, THE CERAMIDE PORTION OF THE FRUITING-INDUCING CEREBROSIDE IN A BASIDIOMYCETE SCHIZOPHYLLUM COMMUNE

Kenji Mori^{*} and Yuji Funaki¹⁾ Department of Agricultural Chemistry, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113, Japan


<u>Summary</u> : A total synthesis of the natural enantiomer of the title compound was accomplished, which confirmed the structure proposed for the fruiting-inducing cerebroside of <u>Schizophyllum</u> commune.

Fruiting body formation in <u>Basidiomycetes</u> is indeed a spectacular phenomenon especially to those who love to taste mushrooms. Its mechanism, however, is still a mystery in spite of the tremendous efforts to clarify it. Very recently Kawai and Ikeda found that the fruiting body formation of <u>Schizophyllum commune</u> (Japanese name : Suéhiro také) can be stimulated by some cerebrosides in its mycelia.²⁾ They then identified one of the active substances as $(2\underline{S}, 3\underline{R}, 4\underline{E}, 8\underline{E}) - \underline{N} - (2'\underline{R}) - 2' - hydroxyhexadecanoyl-1-\underline{O}-\beta-D-glucopyrano$ syl-9-methyl-4,8-sphingadienine <u>la</u>,³⁾ which had previously been isolated froma sea anemone (<u>Metridium senile</u>) by Karlsson <u>et al</u>.⁴⁾ Such a minute amount of<u>La</u> as 0.1 µg induced the fruiting body formation of <u>S.commune</u>, and thecorresponding ceramide <u>lb</u> lacking the sugar portion was also active.³⁾

This remarkable bioactivity of l_{e} prompted us to synthesize it so as to confirm the proposed structure.⁵⁾ In this communication will be described a synthesis of the ceramide l_{e} with correct stereochemistry. Our synthetic l_{e} was highly active in inducing the fruiting body formation of <u>S.commune</u>.

Construction of the sphingadienine portion of 1b started from the known homoprenyl acetate 2.⁶⁾ Oxidation of 2 with SeO₂ was followed by NaBH₄ reduction to give 3a, whose acetylation (Ac_2O/C_5H_5N) yielded 3b (38.0 % from 2). This was treated with <u>n-C₈H₁₇MgBr/THF</u> in the presence of Li₂CuCl₄ to give 4a (94.2 %). The corresponding tosylate 4b was submitted to the Finkelstein reaction (NaI/acetone) to afford 5 (96.2 %). Alkylation of HC=CCH₂OTHP with 5 was effected with <u>n</u>-BuLi in THF/HMPA (-15°, 1.5 hr; 0°, 1.5 hr), yielding 6 (44.3 %) after the removal of the THP group with <u>p</u>-TsOH/MeOH (room temp, 18 hr). The alcohol 6 gave an aldehyde χ (92.4 %) upon treatment with MnO₂ in pet ether.

Condensation of χ with 2-nitroethanol in the presence of K_2CO_3 in MeOH⁷

afforded a nitro diol § as a diastereomeric mixture. Because of the instability of §, its chromatographic separation into the <u>erythro-</u> and <u>threo-</u>isomers was unsuccessful. Conversion of § into the corresponding acetonide⁸) was not successful either due to the retro-aldol reaction. The diastereomeric nitro diol § was therefore directly reduced with Zn/EtOH-conc HCl. The resulting §a was acetylated ($Ac_2O/MeOH$) to give §b, whose EtOAc soln deposited a crystalline mass, mp 95.5%96.5% (24.6% from 7). This was later shown to be (±)-<u>threo-</u>\$b' (<u>vide infra</u>). The mother liquor was treated with Me₂C(OMe)₂ and

PPTS in acetone to give a mixture of $(\pm) - \frac{10}{40}$ and $\frac{10}{20}$. This was separated by medium pressure LC (SiO₂) to give $(\pm)-\underline{erythro}-\lambda$ (21.5% from 7) and $(\pm)-\underline{threo}-\lambda$ 10' (4.7% yield from 7). The assignment of the relative configuration between C-2 and C-3 of 10 was made possible by ¹H-NMR spectroscopy according to our previous observation.^{8,9)} The one with an equatorial -NHAc [δ (CDCl₃) 4.58(1H, d,J=7 Hz, -CHC=CCH₂-)] was the erythro-isomer (\pm) -10, while the other with an axial-NHAc[δ(CDCl₃) 4.80 (1H,d,J=2 Hz, -CHC≡CCH₂-)] was the threo-isomer (±)-10'. The aforementioned crystalline $(\pm) - \frac{1}{20}$ yielded $(\pm) - \frac{10}{10}$ upon acetonide formation, manifesting its threo-stereochemistry. Removal of the acetonide protective group of (±)-10 was effected by treatment with <u>p</u>-TsOH/<u>i</u>-PrOH (40°, 40 min) to give (t)-erythro-9b. Prior to the reduction of the triple bond, (±)-erythro-9b was treated with KOH/aqMeOH (reflux, 6 hr) to remove the Nacetyl group. The resulting (±)-erythro-9a was reduced with LAH/THF to give (±)-erythro-lla (42.6% from 9b). Similarly (±)-threo-9b' yielded (±)-threo-11a' (52.7% from 9b'). These two were separately N-acetylated (Ac,O/MeOH) to give (±)-(4E,8E)-2,3-erythro-2-acetamino-9-methyl-4,8-octadecadiene-1,2-diol 11b and its three- isomer 11b'. The ¹H- and ¹³C-NMR spectra of these two products were compared with those of the N-acetylnonadecasphingadienine derived from the natural cerebroside la of S. commune. A part of ¹³C-NMR data as shown in Table 1 indicated that the sample derived from the natural product possesses erythro- stereochemistry. The 400 MHz ¹H-NMR spectrum of (±)-erythrollb was identical with that of the sample of the natural origin.¹⁰⁾

The remaining task was to prepare (\underline{R}) -2-acetoxyhexadecanoic acid $\frac{1}{2}$ and to N-acylate (\pm) - $\frac{1}{14}$ with (\underline{R}) - $\frac{1}{12}$. By employing (\underline{R}) - $\frac{1}{12}$ as the acylating agent, we expected the separation of the resulting diastereomeric mixture in a later stage. The desired acid (\underline{R}) - $\frac{1}{12}$ was prepared by the acetylation (Ac_2O/C_2H_5N) of the corresponding hydroxy acid (\underline{R}) - $\frac{1}{12}$, mp 92 0 93°; $[\alpha]_D^{20}$ -2.9° (c= 1.03, CHCl₃)[lit.¹²) mp 93.3 0 93.5°; $[\alpha]_D^{-3.2°}$ (CHCl₃)].^{11 10 14)} This, in turn, was obtained by deaminating (\underline{R}) -2-aminohexadecanoic acid, which was prepared by the enzymatic resolution (amino acylase)¹⁵) of the known racemate.¹⁶) Acylation of (\pm) - $\frac{1}{14}$ with (\underline{R}) - $\frac{1}{12}$ in the presence of EtN=C=N(CH₂)₃NMe₂·HCl¹⁴) gave a diastereomeric mixture of $\frac{1}{3}$ and $\frac{1}{3}$ (45.6% from $\frac{1}{3}$). This was dissolved in CHCl₃ and treated with NaOH/MeOH (room temp, 1 hr) to give a mixture

Carbon (No.)	Natural	NaturalSynthetic (CDCl3, 22.6 MHz)(CDCl3, 100 MHz)(±)-erythro-llb (±)-threo-llb	
	(CDC1 ₃ , 100 MHz)		
-CH ₂ O-(C-1)	62.19	62.1	63.7
)CHN< (C-2)	54.36	54.5	54.9
)CHO- (C-3)	74.48	74.2	72.5

Table 1. ¹³C-NMR data of the natural and synthetic 2-acetamino-9-methyl-4,8-octadecadiene-1,2-diol of 13b and 1b. Chromatographic separation (Merck Lobar column, Lichroprep $^{\textcircled{B}}$ Si 60 (40 \circ 63 µm); Elution with CHCl₃-MeOH=150:1) of the mixture gave 13b (22.3 * from l_{a} , $[\alpha]_{D}^{21}+10.6^{\circ}$ (c=0.54, CHCl₃), and l_{D} , mp 62 \circ 64°; $[\alpha]_{D}^{21}+6.4^{\circ}$ (c= 0.76, CHCl3). An authentic sample of 1b, prepared from 1a by the method of Hammarström¹⁷⁾ showed mp 59 \cdot 61°; $[\alpha]_D^{21}$ +7.3±0.4° (c=0.25, CHCl₃). The identity of the natural and synthetic 1b was confirmed by the comparison of IR, 1H-NMR (400 MHz), ¹³C-NMR (25 MHz) and HPTLC using three different solvent systems.¹⁸⁾ The final proof of the identity of our synthetic 1b with the ceramide 1b of natural origin was its very strong fruiting-inducing activity on S.commune. Indeed the specific activity of our lb (15,000 units/mg) was higher than that (10,000 units/mg) of the natural cerebroside la itself. The diastereomer $\ensuremath{\mbox{l}3b}$ was less active (2,000 units/mg).¹⁹⁾

In conclusion, the structure la proposed for the fruiting-inducing cerebroside of Schizophyllum commune was confirmed by synthesizing lb.

REFERENCES AND FOOTNOTES

- 1) Research Fellow on leave from Sumitomo Chemical Co., 1983~1985.

- G. Kawai and Y. Ikeda, <u>Biochim.Biophys.Acta</u> 719, 612 (1982).
 G. Kawai and Y. Ikeda, <u>Biochim.Biophys.Acta</u> 754, 243 (1983).
 K.-A. Karlsson, H. Leffler and B.O. Samuelsson, <u>Biochim.Biophys.Acta</u> 574, 79 (1979).
- 5) For our previous work in sphingosine synthesis see : K.Mori and T. Ume-

- 5) For our previous work in sphingosine synthesis see : K.Mori and T. Umemura, <u>Tetrahedron Letters</u> 23, 3391 (1982).
 6) M. Julia, S. Julia and R. Guégan, <u>Bull.Soc.Chim.France</u> 1072 (1960).
 7) C.A. Grob and F. Gadient, <u>Helv.Chim.Acta</u> 40, 1145 (1957).
 8) T. Umemura and K. Mori, <u>Agric.Biol.Chem</u>. 46, 1797 (1982).
 9) K. Mori and T. Umemura, <u>Tetrahedron Letters</u> 22, 4429 (1981).
 10) ¹H-NMR data (400 MHz, CDCl₃) of (±) -erythro-1Lb: 0.88 (3H,t,J=7.0Hz), 1.24 (12H,br.s), 1.36 (2H,m), 1.58 (3H,s), 1.94 (2H,t,J=8.0 Hz), 2.03 (3H,s), 2.08 (4H,br.s), 3.50 (1H,br.s), 3.58 (1H,br.s), 3.68 (1H,deformed d, J=11.0 Hz), 3.88 (1H,dt,J₁=7.6 Hz, J₂=3.8 Hz), 3.92 (1H,dd,J₁=11.0 Hz, J₂=3.8 Hz), 4.30 (1H,br.s), 5.09 (1H,t,J=6.0 Hz), 5.53 (1H,dd,J₁=15.6 Hz, J₂=6.4 Hz), 5.79 (1H.ddd,J₁=15.6 Hz, J₂=6.4 Hz), 4.55 (1H,d,J=7.0 6.4 Hz), 5.79 (lH,ddd,J₁=15.6 Hz, J₂=6.4 Hz, J₃=5.5 Hz), 6.55 (lH,d,J=7.0 Hz).
- 11) (R)-2-Hydroxyhexadecanoic acid 12b was known as a constituent of wool wax. 12,13) Its (S)-enantiomer was synthesized by Horn et al.,13) while Hammar-ström reported the synthesis of (R)-12b (without experimental details).
 12) D.H.S. Horn, F.W. Hougen, E.von Rudloff and D.A. Sutton, J.Chem.Soc.177 (
- 1954) and refs cited therein.

- 13) D.H.S. Horn and Y.Y. Pretorius, <u>J.Chem.Soc</u>. 1460 (1954).
 14) S. Hammarström, <u>J.Lipid Res</u>. 12, 760 (1971)
 15) For the related enzymatic resolution of (±)-2-aminodecanoic acid see: Y.

- 15) For the related enzymatic resolution of (±)-2-aminodecanoic acid see: Y. Masaoka, M. Sakakibara and K. Mori, <u>Agric.Biol.Chem.</u> 46, 2319 (1982).
 16) N. Gerencevic, A. Castek, M. Sateva, J. Pluscec and M. Prostenik, <u>Monatsh. Chem.</u> 97, 331 (1966); <u>Chem.Abstr.</u> 65, 2123b (1966).
 17) S. Hammarström, <u>Eur.J.Biochem.</u> 15, 581 (1970).
 18) Physical data of synthetic lb: ¹H-NMR (400 MHz, CDCl₃) & 0.87 (6H,t,J=7.0 Hz), 1.20v1.45 (40H,m),1.58 (3H,s), 1.95 (2H,t,J=7.5 Hz), 2.08 (4H,br,s), 3.20 (1H,br.s), 3.55 (1H,br.s), 3.70 (1H,br,s),3.74 (1H,deformed d, J=11.0 Hz), 3.87 (1H,dd,J₁=11.0 Hz, J₂=4.0 Hz), 3.91 (1H,dt,J₁=8.0 Hz, J₂=4.0 Hz), 4.11 (1H,dd,J₁=7.5 Hz, J₂=3.5 Hz), 4.27 (1H,br,s), 5.09 (1H,t,J=6.0 Hz), 5.52 (1H,dd,J₁=15.5 Hz, J₂=6.5 Hz), 5.79 (1H,dt,J₁=15.5 Hz, J₂=6.0 Hz), 7.21 (1H,d,J=8.0 Hz); ¹³C-NMR(25 MHz, CDCl₃) & 14.1, 16.0, 22.7, 25.2, 27.6, 28.1, 29.4, 29.6, 29.7, 31.9, 32.6, 34.7, 39.7, 54.5, 61.9, 72.5, 74.1, 123.1, 128.6, 134.0, 136.2, 175.5; HPTLC (Merck Kieselgel 60F₂₅₄) Rf 0.53 (CHCl₃-MeOH=9:1), Rf 0.60 (<u>n</u>-hexane-acetone=1:1), Rf 0.16 (C₆H₆-EtOAc=1:4). EtOAc=1:4).
- 19) We thank Mr.G.Kawai of Noda Institute for Scientific Research, Noda, Chiba, for his kind gift of la and for the bioassay of our synthetic materials.